Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation.
نویسندگان
چکیده
UVB-induced DNA damage is a crucial event in UVB-mediated apoptosis. On the other hand, UVB directly activates death receptors on the cell surface including CD95, implying that UVB-induced apoptosis can be initiated at the cell membrane through death receptor clustering. This study was performed to measure the relative contribution of nuclear and membrane effects in UVB-induced apoptosis of the human epithelial cell line HeLa. UVB-mediated DNA damage can be reduced by treating cells with liposomes containing the repair enzyme photolyase followed by exposure to photoreactivating light. Addition of photolyase followed by photoreactivation after UVB reduced the apoptosis rate significantly, whereas empty liposomes had no effect. Likewise, photoreactivating treatment did not affect apoptosis induced by the ligand of CD95, CD95L. UVB exposure at 4 degrees C, which prevents CD95 clustering, also reduced the apoptosis rate, but to a lesser extent. When cells were exposed to UVB at 4 degrees C and treated with photolyase plus photoreactivating light, UVB-induced apoptosis was almost completely prevented. Inhibition of caspase-3, a downstream protease in the CD95 signaling pathway, blocked both CD95L and UVB-induced apoptosis, whereas blockage of caspase-8, the most proximal caspase, inhibited CD95L-mediated apoptosis completely, but UVB-induced apoptosis only partially. Although according to these data nuclear effects seem to be slightly more effective in mediating UVB-induced apoptosis than membrane events, both are necessary for the complete apoptotic response. Thus, this study shows that nuclear and membrane effects are not mutually exclusive and that both components contribute independently to a complete response to UVB.
منابع مشابه
Induction of a bystander effect after therapeutic ultrasound exposure in human melanoma: In-vitro assay
Background: The induction of bystander effect via ionizing radiation has been well proven. However, few studies have investigated the bystander effect following non-ionizing radiation, such as ultrasound waves. Here, the bystander effect after different sonication times on human melanoma cell line (A375), is evaluated by assessing cell viability and apoptosis. Materials and Methods: The cells w...
متن کاملInduction of apoptosis by 900 MHz radiofrequency radiation emitted from a GSM mobile phone simulator in bystander Jurkat cells
Background: Radiation-induced bystander effect is a response which results in damage in non-irradiated cells in response to signals from the irradiated cells. The aim of the present study was to investigate microwave-induced bystander effect from a GSM mobile phone simulator on induction of apoptosis in Jurkat cell line. Materials and Methods: Jurkat cells were divided into three groups of non-...
متن کاملOxidative membrane damage and its involvement in gamma radiation-induced apoptotic cell death.
Background: Recent results have provided increasing evidence to support involvement of membrane damage in the mechanism of ionizing radiation induced killing of mammalian cells. These findings have stimulated renewed interest in evaluating the damage to membrane as a primary initiator in radiation-induced cell killing especially in apoptotic death. The present study was aimed to gain deeper ins...
متن کاملInduction of apoptosis in human tumor cell lines by platelets
Introduction: It has been reported that platelets can eradicate tumor cells in vitro, although the mechanism of this effect has not been determined. The effect of platelets on the induction of apoptosis in tumor cells is largely unknown. Materials and methods: To investigate this effect, two human hematologic cell lines, K562 and Daudi, were independently faced with unstimulated and thromb...
متن کاملRadiosensitizing effect of deferoxamine on human glioma cells
ABSTRACT Background: Tumor cells exhibit an increased requirement for iron to support their rapid proliferation. Deferoxamine (DFO), an iron chelator, has been reported to have anti-proliferative effects on cancer cells through induction of apoptosis and cell cycle arrest. X-rays also induce apoptosis and cell cycle arrest. However, limited information is available regarding the effect of iron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 14 شماره
صفحات -
تاریخ انتشار 1999